\(DP[i][j] =\)(ドア \(i\) まで見て,ドア \(i\) は開けずに \(j\) 個のドアを開けたときの火薬庫の危険度の最小値)とする.
\(\displaystyle S_i = \sum_{j \le i}A_j\) とすると,DP の遷移が以下のようになる.
\(\displaystyle DP[i + 1][j] = \min_{k\ge 0}(DP[i - k][j - k] + (S_{i} - S_{i - k}) ^ 2)\)
#include <iostream>
using namespace std;
using ll = long long;
const ll INF = 1e18;
int main() {
int N;
cin >> N;
ll S[N + 1], DP[N + 2][N + 1];
S[0] = 0;
for (int i = 0; i < N; i++) cin >> S[i + 1], S[i + 1] += S[i];
for (int i = 0; i < N + 2; i++) {
for (int j = 0; j < N + 1; j++) DP[i][j] = INF;
}
DP[0][0] = 0;
for (int i = 0; i < N + 1; i++) {
for (int j = 0; j < N + 1; j++) {
for (int k = 0; k < N + 2; k++) {
if (i - k < 0 || j - k < 0) continue;
ll cost = S[i] - S[i - k];
DP[i + 1][j] = min(DP[i + 1][j], DP[i - k][j - k] + cost * cost);
}
}
}
for (int i = 0; i < N; i++) {
cout << min(DP[N][i + 1], DP[N + 1][i + 1]) << endl;
}
}
この DP を斜め(\(DP[i][j]\ \rightarrow DP[i + 1][j + 1] \ \rightarrow \cdots\))に計算し,その計算に Convex Hull Trick を用いれば計算量 \(O(N^2)\) を達成できる.
#include <cmath>
#include <deque>
#include <iostream>
using namespace std;
using ll = long long;
const ll INF = 1LL << 60;
struct ConvexHullTrick {
using F = pair<ll, ll>;
deque<F> deq;
#define a first
#define b second
#define lines deq.size()
bool invalid_f1(F f0, F f1, F f2) {
return (__int128) (f1.a - f0.a) * (f2.b - f1.b) >= (__int128) (f1.b - f0.b) * (f2.a - f1.a);
}
ll f(F f0, ll x) { return f0.a * x + f0.b; }
void add(F f0) {
while (lines >= 2 && invalid_f1(deq[lines - 2], deq[lines - 1], f0)) {
deq.pop_back();
}
deq.push_back(f0);
}
ll min(ll x) {
while (lines >= 2 && f(deq[0], x) >= f(deq[1], x)) {
deq.pop_front();
}
return f(deq[0], x);
}
#undef a
#undef b
#undef lines
};
int main() {
int N;
cin >> N;
ll S[N + 1], DP[N + 2][N + 1];
S[0] = 0;
for (int i = 0; i < N; i++) cin >> S[i + 1], S[i + 1] += S[i];
for (int i = 0; i < N + 2; i++) {
for (int j = 0; j < N + 1; j++) DP[i][j] = INF;
}
for (int i = 0; i < N + 2; i++) DP[i][0] = 0;
for (int i = 0; i < N + 2; i++) {
ConvexHullTrick CHT;
for (int j = 0; j < N + 1; j++) {
if (i + j + 1 > N + 1) break;
ll A = -2 * S[i + j], B = S[i + j] * S[i + j] + DP[i + j][j];
ll X = S[i + j], Y = S[i + j] * S[i + j];
CHT.add(make_pair(A, B));
DP[i + j + 1][j] = min(DP[i + j + 1][j], CHT.min(X) + Y);
}
}
for (int i = 0; i < N; i++) {
cout << min(DP[N][i + 1], DP[N + 1][i + 1]) << endl;
}
}